

#### **Green Flash**

#### High performance computing for real-time science

WP5 Status - PLDA / Accelize

#### Final Design Review – Meudon April 2018



Commission

Project #671662 funded by European Commission under program H2020-EU.1.2.2 coordinated in H2020-FETHPC-2014



- WP5 Past Achievements
- WP5 Present Outcomes
- WP5 Applications
- WP5 Future
- Discussion





# WP5 – Past achievements









### WP5 – Context Reminder

• WP5 = Smart Interconnects

"The goal of this WP is to provide a comprehensive study of a Smart Interconnect concept, in the context of the AO application, including hardware, firmware, middleware and development environment considerations"

- WP5 is mainly structured around :
  - Development of new features for QuickPlay tool
  - Design of Smart Interconnect using QuickPlay tool





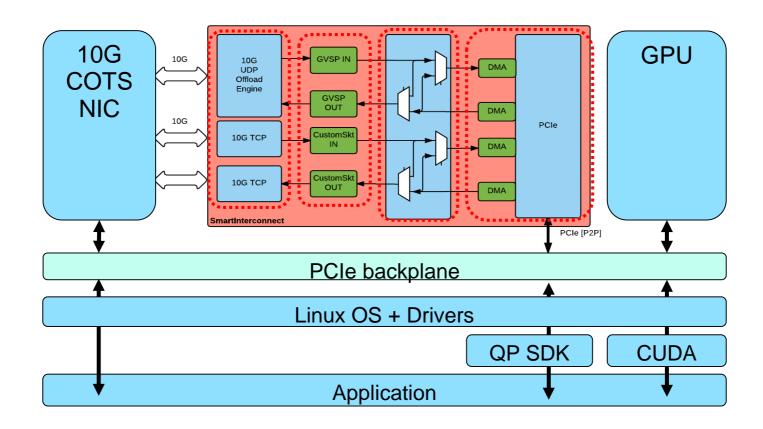




#### MTR - WP5 Status

- 1<sup>st</sup> half of the project allowed to
  - Explore feasibility of different solutions
  - Extract solutions that appeared to be the most realistic and pertinent ... and discarding others
  - Start development and integration of these solutions
- Main outcomes
  - QuickPlay
    - improved tool maturity, improved HLS performances
    - Additional target support (Arria 10)
    - Integration of new IPs : UDP, UDP multicast, DDR4, PCIe Peer-to-Peer (basic)

MICROGATE








#### MTR - WP5 Status - cont'd

- Main outcomes
  - Smart NIC : Materialized through Smart Interconnect concept











# MTR – WP5 Remaining objectives

- Remaining objectives after D5.1
  - Implementation of a new Smart Interconnect with :
    - Mitigation of limitations (PCIe and TCP/UDP performances)
    - Complete P2P feature integration
    - Microgate uXComp support
  - µ-server concept support (Arria10 SOC support for execution of QP designs)
  - Adaptative Optics implementation using QuickPlay



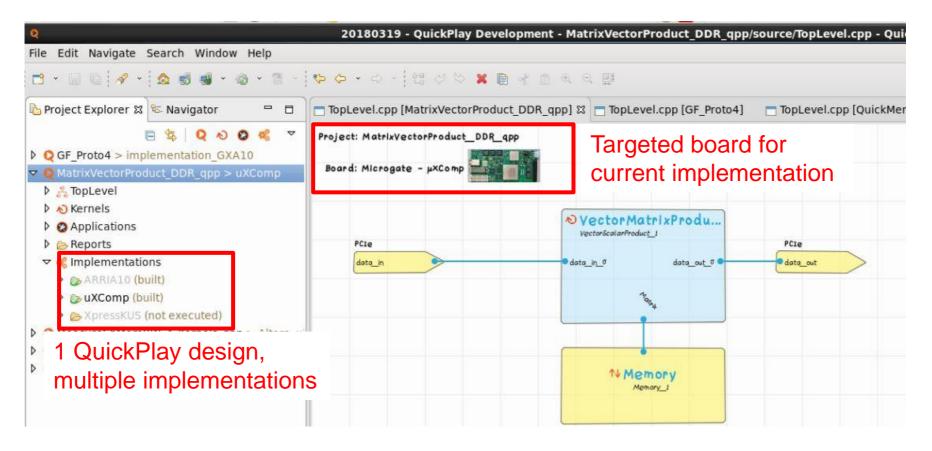






# WP5 – Present Outcomes










# WP5 – QuickPlay Features & Perf.

Multiple implementations support (Eased migration of a same project to various FPGA families / boards)



University









# WP5 – QuickPlay Features & Perf.

- Configurable PCIe :
  - Dynamic PCIe (built for each project), allowing reduced resources usage

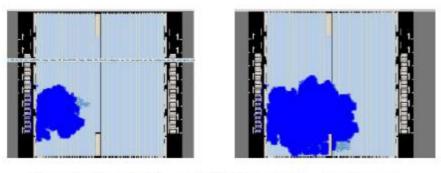



Figure 1 : XpressGX5 layout for PCIe Loopback on 1 or 4 streams

- Enumeration options (BAR opening for P2P, 32/64 bit enumeration)
- PCIe registers exposed to internal logic (eg for DMA configuration by embedded processor)
- Support of dynamic parameters in emulation (registers), allowing more complex/accurate C models
- But also... support of CSP providers platforms : Amazon AWS (Xilinx) / OVH (Intel DCP)









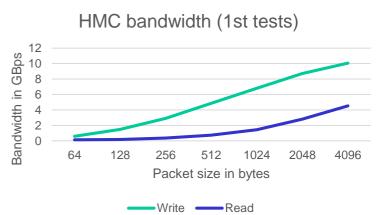
### WP5 – QuickPlay Features & Perf.

- SDK improvements :
  - Multi-board support
  - Improved TCP performances (around 9 Gbps)
  - Improved PCIe performances (around 5.5 Gbps for Gen3x8)
  - Addition of UDP streams support
  - Addition of TCP and UDP configuration and management methods
  - Peer-2-Peer support for Read/Write streams operations
- D5.10 (Scalability of QuickPlay designs) demonstrated tool versatility










## WP5 – QuickPlay Boards & IPs

- Additional boards support :
  - Intel Arria 10 boards : Bittware A10PL4, Microgate uXComp, Intel RushCreek (DCP)
  - Xilinx board : Virtex Ultrascale (AWS F1 instances)
- Microgate µXComp board, including :
  - PCIe Gen3x8
  - 1 QSFP (4x10G) with TCP and UDP offloading
  - HMC memory with limitations :
    - Access must be multiple of 64 bytes
    - Only 1 lane (out of 4)
    - Bandwidth below expectation (18 GBps)

University





#### → Already working on limitation resolution









#### WP5 – Smart Interconnect

- Microgate uXComp board support
- Peer-to-Peer solution for reduced CPU interaction and improved BW
- Improved performances (figures obtained for GF application)
  - TCP (8 Gbps)
  - UDP (9,5 Gbps)
  - PCIe (35 Gbps)
  - C Kernels for GVSP images encoding/decoding (up to 10 Gbps)
- Internal definition :
  - Logic addition for enhanced modes of operation and testability (more loopback modes)
  - Improved C kernels for dynamic images/matrix handling









# WP5 – Protocols support

- D5.11 : Support of UDP, Infiniband and RTPS
  - UDP fully supported under QuickPlay
    - UDP offload engine IP Core
    - UDP stream support by SDK)
  - Infiniband :
    - Not a requirement for AO.
    - Not supported under QuickPlay. Long and expensive developments

Durham

- Could be supported by existing COTS product such as Mellanox Smart NIC solutions (Innova 2 or Bluefield)
- RTPS :
  - Initial requirement of the project.
  - Not reported in ESO requirements
  - Could also be supported by existing COTS









#### WP5 – Middleware

- D5.6 and D5.9 outcomes:
  - Standard NIC adaptation to Smart Interconnect : out of scope considering manpower and skills in the project
  - OpenMPI : deeply relies on standard NIC architecture. The abstraction level of a custom transport layer is not adequate with manpower & skills
  - OpenDDS : Custom UDP transport layer concept has high level of abstraction, allowing support of QuickNET
  - QuickPlay SDK enhancements (already mentioned in slide 11)



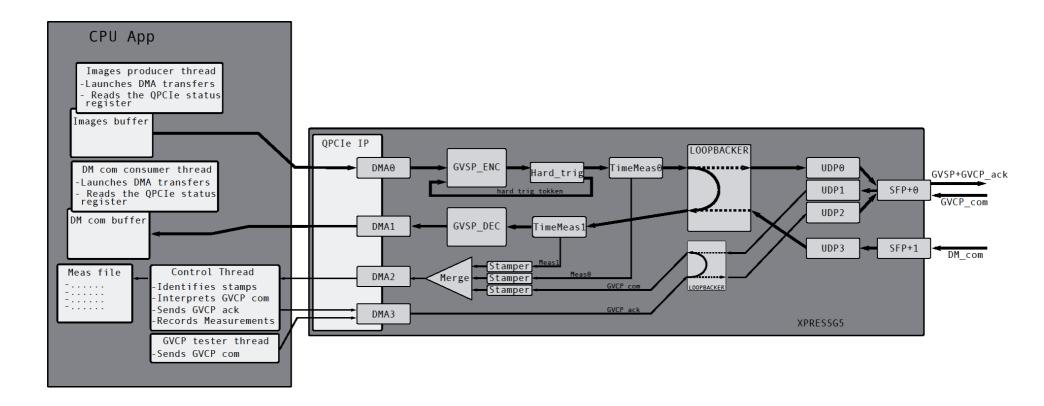






# WP5 – Applications









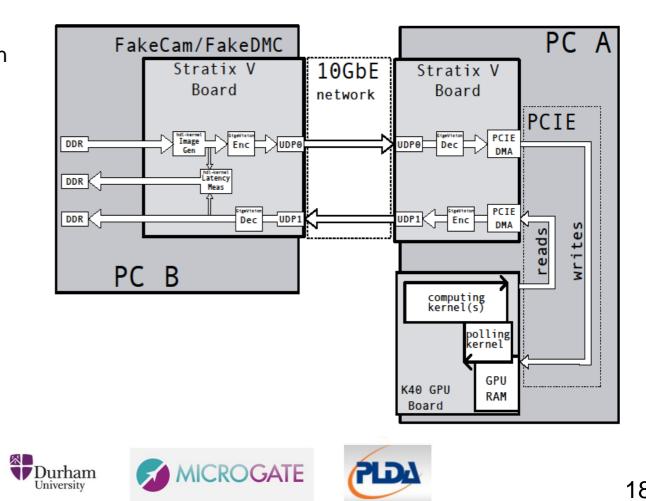

## WP5 – OBSPM usage of SI

Fake CAM / DMC prototype •








University





# WP5 – OBSPM usage of SI

- RTC prototype •
  - Fake CAM / DMC
  - Image acquisition ٠
  - **GPU** interfacing ٠
  - DM matrix computation



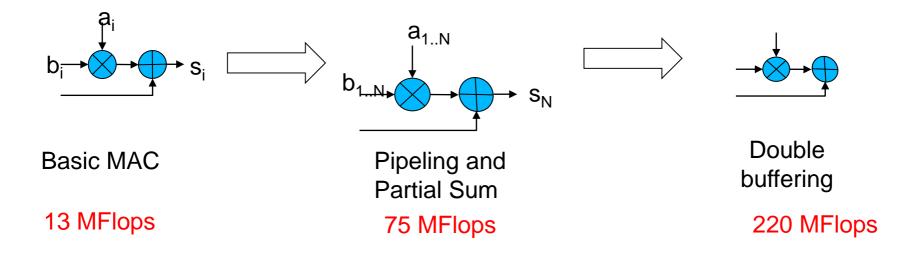




# WP5 – Adaptative Optics (1/4)

- Objectives
  - Investigate FPGA boards computation capability
  - Validate QuickPlay capability to explore various solutions
  - Target : MVM on µXComp board using HMC memory (Intermediate results presented were obtained on Arria10 boards with DDR4 memory)
- Approach :
  - Step by step architecture, from scalar product to MVM distributed over 8 kernels










# WP5 – Adaptative Optics (2/4)

<u>Scalar Product</u>:  $S = \sum_{i=1,N \text{ step 1}} (a_i b_i)$ 

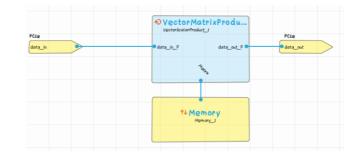


#### **Matrix Vector Product:**

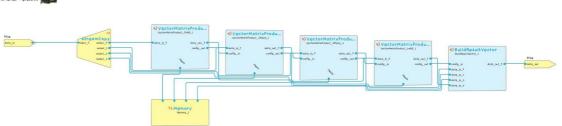
- \* Vector send through stream
- \* Matrix stored in external memory

@ Each clock cycle, memory can exchange 2x64 bits, ie 4 floats => 4 MAC at the same time

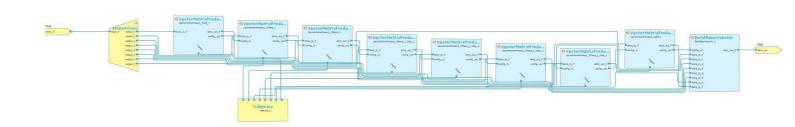







# WP5 – Adaptative Optics (3/4)


MVM 1 kernel with 4 MAC 822 MFlops







MVM 8 kernels with 4 MAC each 3,9 GFlops





Board Bittwore - AOFLA







# WP5 – Adaptative Optics (4/4)

- Figures interpretation :
  - Kernel multiplication should allow proportional computation BW, in the limit of memory BW
  - Could not reach DDR4 memory BW limit (6 GFlops) with 8 kernels. C Kernel stall policy could be the root cause :
    - DDR access by 1 kernel is delayed
    - It causes its streams RD/WR and computations operations to be stalled,
    - then in cascade slowing all the computation
  - Memory BW / Latency is another limiting factor :
    - Arria10 device used should have enough resources for 32 kernels (8 kernels occupy around 20 % of resources)
    - HMC memory is a good candidate to support this computation bandwidth
      - 144 GBps announced over 4 lanes
      - First MVM tests targeting HMC are inline with DDR4 results









# WP5 – Future









#### WP5 – Next developments

- D 5.4 : Support of Arria10 SOC devices
  - SDK compiled for ARM
  - Root Port design to host QuickPlay designs
  - Boards support : Altera Arria10 SOC DevKit + Microgate µXLink
- D 5.5 : Smart Interconnect performances report
  - Final report on Microgate µXComp board
  - Solving last limitations (HMC, P2P)
- D 5.8 : IPs implementing Adaptative Optics algorithms
  - Targeting µXComp boards with HMC memory (4 lanes)
  - FPGA Cluster tentative ?









#### WP5 – Deliverables Status

| ID    | Content                                  | Delivery       |
|-------|------------------------------------------|----------------|
| D5.1  | Smart interconnect prototype 1           | Delivered      |
| D5.2  | Smart interconnect prototype 2           | Delivered      |
| D5.3  | Smart interconnect prototype 3           | Delivered      |
| D5.4  | Smart interconnect prototype 4           | July 2018      |
| D5.5  | Smart interconnect performance report    | Sept. 2018 (1) |
| D5.6  | Smart features to middleware test report | Delivered      |
| D5.7  | Prototype Boards Support Package         | Delivered (2)  |
| D5.8  | IPs implementing AO control algorithms   | June 2018      |
| D5.9  | System level API primitives              | Delivered      |
| D5.10 | Scalability of QuickPlay designs         | Delivered      |
| D5.11 | Support for UDP, Infiniband and RTPS     | UDP : Done     |

(1) : Final report. Intermediate report comes with each delivery

(2) : New boards support when available











#### WP5 – Discussion







